Tnformation Society
Technologics

Assertion-based Loop Invariant Generation

or, Counter-example Refinement Backwards

Mikola% Janota

System Research Group,
University College Dublin, Ireland

(® Mobius

IST-15905

e
‘sﬁ!l-
He)- 2

2|

Mikolas Janota Assertion-based Loop Invariant Generation

> we are looking for loop invariants that will show that
something “bad” will not happen

for (int i =0; i <a.length —1; i++) {
i=i4+1;
ali] =0;

}

=5
O
] 3

[}
’:
@
c
z

2|

Mikolas Janota

Assertion-based Loop Invariant Generation

» we are looking for loop invariants that will show that
something “bad” will not happen
//@ loop_invariant a != null;
//@ loop_invariant i + 1 >= 0;
for (int i =0; i <a.length —1; i++) {
=i+ 1;
ali] =0;
}

=5
’sﬁ!k
He] - :3

2|

Mikolas Janota Assertion-based Loop Invariant Generation

Scary Slide

//@ requires a != null;
/*@ requires
@ (\forall int x; (0 <= x & x < a.length) ==> a[x] != null); */
void setToZero(int [[[] a) {
/*@ loop_invariant
@ (\forall int x; (0 <= x & x < a.length) ==> a[x] !'= null);
@ loop_invariant a != null;
@ loop_invariant i >= 0; */
for (int i =0; i <a.length; i++){
/*@ loop_invariant j >= 0;
@ loop_invariant a != null;
@ loop_invariant
@ (\forall int x; (0 <= x & x < a.length) ==> a[x] !'= null); */
for (int j =0;j <a[i].length; j++)
a[i]lil =0;

Mikolas Janota Assertion-based Loop Invariant Generation

Invariants from Assertions Using Weakest Precondition

> let's assume that desired behavior is expressed as assertions

> using a weakest precondition calculus we can back-propagate
assertions to the head of the loop

for (int i =0;i <a.length —1; i++) {
i=i4+1;
//@ assert a !'= null;
//@ assert i <= 0;
//@ assert i < a.length;
al[i] =0;

nnnnnn

Mikolas Janota Assertion-based Loop Invariant Generation

Invariants from Assertions Using Weakest Precondition

> let's assume that desired behavior is expressed as assertions

> using a weakest precondition calculus we can back-propagate
assertions to the head of the loop
//@ loop_invariant (i < a.length - 1) ==> a != null;

for (int i =0;i <a.length —1; i++) {
i=i4+1;
//@ assert a !'= null;
//@ assert i <= 0;
//@ assert i < a.length;
al[i] =0;

nnnnnn

Mikolas Janota Assertion-based Loop Invariant Generation

Invariants from Assertions Using Weakest Precondition

> let's assume that desired behavior is expressed as assertions

> using a weakest precondition calculus we can back-propagate
assertions to the head of the loop
//@ loop_invariant (i < a.length - 1) ==> a != null;
//@ loop_invariant (i < a.length - 1) ==> 0 <= i + 1;

for (int i =0;i <a.length —1; i++) {
i=i4+1;
//@ assert a !'= null;
//@ assert i <= 0;
//@ assert i < a.length;
al[i] =0;

=5
’sﬁ!k
He] - :3

Mikolas Janota Assertion-based Loop Invariant Generation

Invariants from Assertions Using Weakest Precondition

> let's assume that desired behavior is expressed as assertions

> using a weakest precondition calculus we can back-propagate
assertions to the head of the loop
//@ loop_invariant (i < a.length - 1) ==> a != null;
//@ loop_invariant (i < a.length - 1) ==> 0 <= i + 1;
//@ loop_invariant (i < a.length - 1) ==> i + 1 < a.length;
for (int i =0;i <a.length —1; i++) {
i=i4+1;
//@ assert a !'= null;
//@ assert i <= 0;

//@ assert i < a.length;
al[i] =0;

=5
’sﬁ!k
He] - :3

Mikolas Janota Assertion-based Loop Invariant Generation

Assertion Back-propagation

» we take a nest of loops

Po;
{Jl} while (Cl) do

Pn_1;

{J,} while (C,) do
Pn;
assert ¢;

» and propagate the invariant outwards

In =wip(Pn, €)
Ji =wip(P;, Ji11)

nnnnnn

Mikolas Janota Assertion-based Loop Invariant Generation

Are the Invariants OK?

> all loops must preserve the pertaining invariant
= J; = wip(LoopBody;, J;)

» the invariant of the outermost loop must be established by the
preceding command

= wip(Po,J1)

nnnnnn

Mikolas Janota Assertion-based Loop Invariant Generation

Implementation in ESC/Java2

| JML-annotated Java code|

Java parsingl
| AST
GC generatlon

invariant
|Guarded Commands O generation

loop desugarmg
| desugared GC |
vC generationl

| Ve |
proving l
| bugs | T
dnd
v

Mikolas Janota Assertion-based Loop Invariant Generation

Input Language

» Guarded Commands:

cmd := x < expr | assumef | assert f |

cmd [emd | cmd; cmd | {J}while expr do cmd
J, f are first-order logic formulas
> captures JML-annotated Java, examples:

» assert pre — a precondition of a called method,
» desired behavior, such as assert a # null

» assume post — a postcondition of a called method

=5
’sﬁ!k
He] - :3

2|

Mikolas Janota

Assertion-based Loop Invariant Generation

Tweaking the Algorithm

> invariant strengthening, heuristically altering the invariant
when found that it does not preserve the pertaining loop, e.g.,

Iv V], vis free in J and V' is a fresh variable

» applying formula simplifications to the inferred invariants

» when computing weakest precondition, ignoring commands
that do not seam relevant (relying on a heuristic)

nnnnnn

Mikolas Janota Assertion-based Loop Invariant Generation

Experiences and Future Work

» works splendidly on the examples | wrote, nevertheless,
> little of existing code is verifiable

» generated invariants are not too big, nevertheless,

> there is still opportunity to prune away trivial invariants

> reporting invariants to the user would serve as valuable
feedback

» extending the analysis to take into account assertions after
the loop would make the analysis considerably more useful

=5
’sﬁ!k
He] - :3

2|

Mikolas Janota Assertion-based Loop Invariant Generation

